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Abstract-The sensitivity of instantaneous EEG coherence for the
investigation of elementary thinking processes was shown by
several authors. Similarly to EP analysis the statistical
validation of the results is based on the multiple repetition of the
same task. This approach is not possible for complex
unreproducible thinking processes of long duration as e.g.,
solving mathematical problems. Classical coherence analysis of
long periods of the EEG suffers from the loss of temporal
information. The paper presents a temporal coherence analysis
of the ongoing EEG preserving the temporal information of long
cognitive processes.
The main point of the method is the decomposition of the whole
time interval in microstates of synchronous oscillations. The
calculation of instantaneous coherence for multiple electrode
pairs yields in a time-dependent high-dimensional coherence
vector. A segmentation algorithm dissects the whole process into
time intervals with stable coherence vectors- the so-called
microstates of oscillations. A subsequent clustering procedure
into a small number of classes results in a sequence of
prototypical microstates, which may be modeled by a
Markovian process. Special entropy parameters characterize the
strength of concatenation of different microstates.
The method was applied in order to understand the special
brain functioning of mathematically highly gifted
subjects.

Keywords -  Coherence, EEG, microstates, entropy,
mathematical giftedness

I. INTRODUCTION

EEG coherence analysis is widely used for the
investigation of cognitive processes. Generally, complex
cognitive processes of long duration are analyzed by
coherence, estimated on the basis of the Fourier
transformation, see e.g. [1]. Modern approaches allow the
estimation of coherence continuously in time and the analysis
of short-term cognitive processes, see e.g. [2], [3]. In the case
of short-term cognitive processes the results were statistically
validated by multiple repetitions of the task.

The EEG coherence analysis during thinking processes of
solving mathematical problems require the temporal
information of synchronization processes. A repetition of the
same task is not possible for one subject. The solving process
varies very strongly for different subjects.

There arises the problem of temporal coherence analysis
of the ongoing EEG. One possible approach is the
decomposition of the whole long time interval into
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microstates of timely stable synchronous oscillations. A
special segmentation algorithm of the multi-dimensional
time-dependent coherence vector was developed. A
clustering procedure yields prototypes of microstates, which
characterize different states of neural network
synchronization. These prototypical microstates are
characterized by their coherence values as a topographical
information and  their duration as a temporal information.
The modeling of the sequence of microstates as a Markovian
process allows the sequential analysis of a thinking process.
Transition probabilities and the entropy reduction as
measures of concatenation characterize the generation of
order in the thinking process.

The EEG of two groups of subjects, mathematical gifted
and normal pupils, was recorded during solving mathematical
problems. A microstate analysis of synchronous oscillations
was performed. In the case of complex problems a higher
entropy reduction could be shown for mathematically gifted
subjects. Moreover, microstates with long duration are
significantly different for the two groups.

II. METHODOLOGY

Estimation of instantaneous coherence
An adaptive estimation method of the coherence function

is used which allows high time and frequency resolution. The
basic idea of the method is as follows: a pair of EEG channels
is understood as a two-dimensional instationary signal
process. This process is modeled as a two-dimensional
autoregressive moving-average model with time-dependent
parameters. The optimization criterion for adapting
parameters is the minimization of the prediction error of the
model in the least mean square sense. The correction of the
model according to this criterion is performed at every
sample point. Thus, the parameters of the model are functions
of time and allow the parametric calculation of the
momentary spectral density matrix of the ARMA model,
which approximates the spectral density matrix of the
underlying pair of EEG channels for the momentary time-
point. Subsequently, the continuous estimation of the
coherence is derived from the momentary spectral density
matrix of the fitted ARMA model. The interested reader can
find the detailed estimation procedure in [4]. This approach
allows the time-dependent calculation of the full coherence
spectrum and therefore the predefinition of a sensitive
frequency band for the investigation of the information
processing considered. For a chosen frequency band
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where tk, k = 1, 2, ..., denote the digital sample points.
The instantaneous coherence analysis was performed for 30
adjacent electrode pairs in the longitudinal and transversal
directions ( so-called local coherences). For a topographic
presentation of local synchronization processes  the mapping
procedure for local coherences was used [4]. With this aim,
fictive coherence positions were placed in the middle of the
30 adjacent electrode pairs considered. The linear
interpolation procedure led to the local coherence map (see
lower panel of Fig. 1).

Segmentation of the time course of multi-dimensional band
coherences
The estimation procedure of instantaneous coherence
described above for a given frequency band yields a 30-
dimensional time-dependent vector of coherences. This
coherence vector may be calculated for each sample point of
each single task. For a data reduction the time courses of

Fig.1: Demonstration of the segmentation procedure. Upper part: time course
of the multidimensional coherence vector with segment boundaries. Middle
part: time course of the segmentation function. Lower part: sequence of
coherence maps with segment boundaries (asterisks) for the marked interval

vector coherences may be subdivided in time segments with
similar vectors of coherence values. The similarity between
two coherence vectors for two adjacent

 short time intervals may be established by a weighted
vector correlation. The weighted correlation between two
vectors a = (a1,..,am) and b = (b1,..,bm) is calculated by
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where p = (p1,..,pM) denotes a weighting vector. In our case
M = 30 is the number electrode pairs (dimension of the
coherence vector). For each time point the mean coherence

vectors )t( ka and )t( kb of two adjacent time windows were

generated:
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with m=1,...,30 and the moving window lengths N = 5. The
inverse weighting vector
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was chosen. From equations (2)-(4) a segmentation function
( ))t(),t(w1)t(w kkk ba−=  is build, which describes the local

similarity of successive coherence vectors. Figure 1 shows an
example of the time courses of the 30-dimensional coherence
vector (upper panel) and the segmentation function )t(w k

(middle panel). Afterwards, the 80%-quantile of the
segmentation function was calculated for the whole time
interval analyzed. Each maximum of the segmentation
function which is greater than the 80%-quantile threshold
served as a segment boundary (see Fig. 1). For each time
segment the duration of the segment and the mean coherence
vector were calculated. The lower panel in Fig. 1 shows the
sequence of local coherence maps for the time interval
marked by arrows. Asterisks mark segmentation boundaries.
The segments founded in this way present stable microstates
of synchronous oscillations.

Clustering of segments of coherence vectors

In order to obtain prototypical microstates a Fuzzy clustering
for the mean values of the 30-dimensional coherence vectors
of the segments was performed (see [5]). In order to
predefine a suitable number of clusters the following
investigations were performed. The mean values of coherence
vectors of the segments were clustered with different number
m of clusters, m = 2,...,10. The sum of squared Euclidian

distances 2
jkd between the vectors of the single segments and

the corresponding cluster centers was calculated:
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nm is the number of segments corresponding to the k-th
cluster center for the cluster number m. Then
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presents the explanation of variance, where N denotes the
global number of segments, xn is the coherence vector of the
n-th segment and x  is the mean coherence vector of all
segments. Obviously, the explanation of variance increases
monotonously with the increased number of clusters. A
reduced rise of function (6) hints to a sufficient number of
clusters. A more objective criterion is the following one:
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The number of clusters is defined by the global minimum m0

of the penalty term (7) with regard to m and the positive
value c.
From clustering we get a sequence of segments with three
parameters: duration of a segment, the 30-dimensional
coherence vector of the associated cluster center and the
number of the cluster center. The segment duration is a
temporal attribute of these microstates, whereas the 30-
dimensional coherence vector of the associated cluster center
reflect the topographical distribution of oscillatory
synchronization of the microstates.

Cluster sequences and Markovian chains
The third parameter of the clustered segments is the

number of the correspondent cluster center and may be
understood as a certain state of oscillatory activity. The
probability of occurrence of each cluster center (or state) will
be estimated by its relative frequency of occurrence.
Shannon‘s entropy is quantified to measure the
disorganization or randomness of occurrence of the states.
Shannon‘s entropy is defined by
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where j, j = 1, ... , n0, are the numbers of clusters and
stand for the different states.

The sequence of microstates may be modeled by a
Markovian chain. The transition probability )i/j(P  as an

important feature of Markovian chains denotes the probability
of occurrence of the cluster center j immediately after the
occurrence of the cluster center i. The estimation results from
the correspondent relative frequency of this event. The
conditional entropy of occurrence of states under the
assumption of i as the present state is defined as
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where ld denotes the logarithm dualis. The conditional
entropy measures how one state i predicts the subsequent
states j. If the other states j are independent from the
occurrence of the state i, it holds, that )i(P)i/j(P =  and

the conditional entropy is equal to the primary entropy
according to (8). In the opposite case the conditional entropy
is less than the primary entropy. The difference
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is called entropy reduction and reflects the sequential
structure of the states. If the  succession of the states is
completely randomly, the entropy reduction is zero. The
entropy reduction increases, if some of the states entail
determined other states. In this case we allude to a strong
sequential structure of the states.

Experiment
In order to understand the special brain functioning of
mathematically highly gifted subjects, we searched for a new
measurement of the difference in the brain functioning of that
group compared to normal subjects.
Twelve right handed mathematically highly gifted and twelve
normal pupils carried out four different classes of tasks with
different task complexity. The tasks were ordered by means
of the number of modality strategies selectable in order to
solve the problem: (i) mental navigation (one possible
strategy), (ii) addition (one possible strategy [6]), (iii)
elementary mathematical problems (two possible strategies)
and (iv) complex mathematical problems (two possible
strategies and activation).
Examples:

(i) Mental navigation: see below (imaginably solvable)

(ii)  Addition: 5+3+9 = ? (computationally solvable).
(iii)  Elementary problem: The length of the diagonal d of

a square is 5 cm. How long is the length of an edge of a
square with doubled area? (computationally ore
imaginably solvable).

(iv) Complex problem: What is the number of diagonals
of a 23-polygon? (computationally ore imaginably
solvable ).

The four kinds of tasks were given in blocks. Each task was
presented on a computer screen. The navigation was evoked
by the given strategy (arrows). Addition was performed by
the known arithmetical algorithm. To solve an elementary or
a complex problem the subjects have to select (and activate
(iv)) one of the two possible strategies of computation or
imagination.
The EEG was recorded from 19 scalp electrodes (10 /20
system, ear lob reference, 256 Hz).
The coherence analysis was focussed on the (13-20 Hz)-
frequency band. This frequency band was found to be
sensitive with regard to thinking processes (see Schack et al.
1999). The segmentation was performed as explained above.
The cluster procedure was executed for each subject and each
task separately.

III. RESULTS

Predefinition of the number of clusters: The number of
clusters was predefined according to (5-7). Beginning with
cluster number 6 the rise of the mean explanation of variance
flattens. The investigation of the penalty criterion (7)
objectifies this observation (compare Fig.2).
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Fig. 2: Criterion (7) as a function of the number of clusters and the penalty
term weighted by the variable c.

The global minimum of the penalty criterion was found for
the cluster number 6. Further cluster analysis was performed
with the fixed cluster number 6.

Entropy reduction: The entropy reduction was calculated
according to  (10) separately for each subject and each task.

Fig.3: Mean values (and standard deviation) of entropy reduction for all
subjects of the two groups

The difference of entropy reduction between
mathematically highly gifted and normal subjects is a
function of task complexity. There is a significant difference
in the case of two modality strategies whereas no difference
can be found with only one strategy (Fig.3).
Stability: The increase of entropy reduction is mainly caused
by an increase in the self-transition probability of the
microstates (highly gifted: 7% more than normal subjects
Fig.4). The self-transition probability gives evidence about
the strength of persistence in a state. A high self-transition
probability hints to the stability in time of the correspondent
microstate.

Again there is a significant difference in the case of two
modality strategies whereas no difference can be found with
only one strategy (Fig.4).

Fig.4: Mean values (and standard deviation) of self-transition probability
in % for all subjects of the two groups

The self-transition probabilities are not equal for all six
clusters. For both groups there are clusters with high and low
stability. The self-transition probability is used to order the
clusters within the two groups.
Topography: The coherence values (cluster centers) of
ordered pairs   may be compared. That means, prototypical
states for mathematical gifted subjects and for normal
subjects will be compared with respect to their order in
stability. The coherence maps in Fig.5 shows the difference
of coherence values for the 2 states with highest self-
transition probability and  for the 2 states with lowest self-
transition probability for the task of solving a elementary
mathematical problem. In the case of stable states coherences
of the electrode pairs C3/P3, F7/F3 and C4/P4 are
significantly higher for mathematically gifted  subjects.

Fig.5: Maps of differences of coherence (mathematically gifted – normal).

IV. DISCUSSION

The presented method of segmentation and clustering
instantaneous EEG coherences enables the detection of stable
prototypical microstates, and thus allows the analysis of
higher mental processes e.g. thinking.

The identification of microstates is a precondition to
consider a cognitive process as a Markovian chain. Against
this background the strength of concatenation of microstates
measurable as entropy reduction might be a new measure
how cognitive processes may be organized. In summary this
method is posing a fascinating challenge for future research
to identify properties of  thinking processes and to understand
how this may interact with giftedness and ongoing
experience.
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